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1. Introduction 

The Army of the future would like to reduce the burden on the Warfighter by 
deploying autonomous systems on the battlefield. Unfortunately, designing systems 
that can handle the dynamic and unpredictable conditions on the battlefield is 
exceedingly difficult. Traditional techniques employ hard-coded rules, definitions, 
and strategies that cannot adjust to the ever-changing environment. To address 
these difficulties, researchers have turned to machine learning to model real-world 
environments and develop systems that can learn and adapt with no prior 
knowledge, human-encoded assumptions, or additional information about the 
world. While we may be quite far from a system that can learn and adapt on its own 
on the battlefield, some researchers have started to study video games as a simpler 
proxy problem that relies on the same principles. The current state-of-the-art system 
(Mnih et al. 2015) uses a convolutional neural network to automatically extract 
relevant features from the video-game display, then uses reinforcement-learning 
techniques to develop strategies that maximize the game score.  

In this report, we provide a detailed description of the existing system, describe 
several failure modes that we have observed, and present ideas for enhancements 
that directly address some of the typical failures.  

2. Reinforcement Learning 

Machine-learning algorithms can be broadly divided into “supervised” and 
“unsupervised” algorithms. Supervised algorithms rely on large collections of 
hand-labeled training data and are usually used to solve problems that can be posed 
as classification or regression tasks. On the other hand, unsupervised learning 
algorithms are more data-centric—usually trying to automatically find patterns or 
natural groupings in the data. Reinforcement learning is a particular unsupervised 
learning method that attempts to develop an optimal action policy by taking actions 
and observing the consequences of those actions. We will be working with the 
particular flavor of reinforcement learning called “Q-learning” (Watkins and Dayan 
1992). In Q-learning, each state of the system is assigned a Q-value that 
corresponds to the expected future rewards associated with reaching that state. 
Initially, the Q-values of all states are set to a random value to encourage 
exploration of a state’s space. The agent chooses its next state, state S`, by choosing 
the action that leads to the state with the highest associated Q-value. It then updates 
the Q-value of its current state, S, by adding the immediate reward of choosing state 
S' with the discounted sum of all possible rewards from being in state S'. This 
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procedure is described by the Bellman equation, shown in Eq. 1, and is the 
fundamental equation of reinforcement learning. 

 
 (1) 

When the agent reaches a reward state, the previous state will be updated with real 
information about the world. Over successive trips through the world toward 
reward states, the agent transfers that real knowledge to further and further states, 
developing an optimal action policy along the way.  

2.1 Q-Networks 

The standard reinforcement-learning procedure maintains an explicit mapping of a 
particular state to a Q-value that estimates the future reward of being in that state, 
typically in a table. However, in some cases the state–space is so large that 
maintaining these explicit mappings is infeasible. In these cases, rather than 
maintain a table of explicit mappings from states to rewards, an approximation 
function is used (Baird 1995). One such realization of this function, known as a 
Q-network, is implemented using a neural network (Tsitsiklis 1997). The network 
is a function of the state and produces the Q-values of all of the possible actions as 
output, as shown in Eq. 2. When such a network is updated using the standard back-
propagation method (Rumelhart 1986), its weights are adjusted in accordance with 
the reinforcement-learning policy. For instance, if the optimal action produced by 
the neural network for a given state generates suboptimal rewards, the weights 
would be adjusted to diminish the desirability of that action for that state.  

  (2) 

2.2 Experience Replay 

While the use of a neural network for reinforcement learning is helpful, it does not 
come without problems. Neural networks are very sensitive to the distribution of 
the learning data and reinforcement learning can introduce a poor data distribution 
(Mnih et al. 2015). For example, in an “online” setting, the Q-value of a state is 
updated in real-time as the agent explores the world. If in a particular region of the 
state–space there is a dominant optimal action, the network may become biased 
toward that action as the optimal action even in dissimilar situations. To counteract 
this problem, a memory of past experiences (the state–action–reward information) 
is stored during training and the network is updated “offline” using minibatches of 
randomly sampled experiences. This alleviates the problem of poor  
data distribution and allows the network to generalize learning across updates. It is 
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also useful for large state–spaces or in domains where it is difficult to generate new 
experiences because the agent can repeatedly learn from past experiences. 

3. Atari Deep Reinforcement Learning 

The current, state-of-the-art, general game-playing system is the deep Q-network 
(DQN) described by Mnih et al. (2015). It uses a convolutional neural network to 
interpret frames from Atari 2600 games and define the action policy. It then uses 
Q-learning and experience replay to update and train the network. The system is 
connected to an Atari game emulator and the only input to the system is the current 
frame, the game score, and whether the game is in a terminal state (the player has 
“lost a life”). At the beginning of every game, the emulator executes a random 
number of no-operation (NOOP) moves to ensure the game starts in a random 
configuration. (See Table 1.) After the game information is passed into the system, 
the emulator returns to the next action to be taken and executes that action—a cycle 
that is repeated indefinitely until the game terminates. When a game terminates, a 
new game is started and the observation–action process resumes. In the following 
subsections we will describe the specific functionality of the Atari deep 
reinforcement learner in reference to the video game “Breakout”.  

In this game, the player controls a paddle and uses it to bounce an on-screen ball 
and break bricks (as shown in Fig. 1a), accumulating a score. The player has 3 lives 
and only loses a life if the ball “misses” the paddle and contacts the bottom of the 
screen. If the player loses all 3 lives, the game is over. 

Table 1 Legal actions for the game “Breakout” 

Action Result 
NOOP Do nothing 

Fire Launch the ball 
Left Move the paddle left 

Right Move the paddle right 
 
The learning system has 2 distinct phases to its operation: a random-exploration 
phase and a learning phase. During the random-exploration phase, the system 
selects actions at random and simply explores the world. This allows it to build up 
a random distribution of initial experience to store in its memory for future updates. 
During the learning phase, the system gradually reduces the number of random 
actions while gradually increasing the number of decisions made by using the DQN. 
During this phase, the system also makes periodic updates to the network using 
minibatches of samples from the experience memory.  
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3.1 Interpretation 

The frame returned from the emulator is 210 × 180 pixels with a 128-color palette 
(Fig. 1a). To reduce the size of the input space, the frame is passed through a simple 
preprocessor that scales the frame to 84 × 84 pixels and converts it to grayscale 
(Fig. 1b). This greatly reduces the dimensionality of the input while preserving 
most of the necessary information. 
 

 
 a) b) 

Fig. 1 Shown a) is a raw frame from “Breakout” and b) a preprocessed frame  

The input to the DQN is the state of the game; however, a single preprocessed frame 
is not sufficient to correctly interpret the game dynamics. For instance, it is 
impossible to determine the movement of an enemy or the agent from a single 
preprocessed frame. Therefore, the current state of the game is represented by 
stacking the previous 3 preprocessed frames with the current preprocessed frame, 
as shown in Fig. 2. This allows the DQN to extract contextual information from the 
game and output meaningful action activations. The exact structure and 
specifications of the DQN can be found in the “Methods” section of Mnih et al. 
(2005), and a basic diagram of the DQN is shown in Fig. 3. 
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Fig. 2 Preprocessed frames that compose a state, stacked in temporally descending order 

 

Fig. 3 The basic structure of the DQN 

3.2 Experience Storage 

An “experience” is defined as a preprocessed frame, the action that frame 
generated, the reward the action generated, and whether the action generated a 
terminal state. These values are stored in 4 separate lists and a single experience 
can be retrieved by accessing the same index across all of the lists. When a 
minibatch is prepared for a learning update, the system fills a buffer with randomly 
selected experiences and then takes minibatch-sized chunks from the buffer. The 
buffer is used until it is empty and then new experiences are randomly selected 
again. It is important to note the experiences used to fill the buffer consist of stacks 
of 4 preprocessed frames rather than individual preprocessed frames, as they will 
be used as inputs to the DQN. In Table 2, we define all of the relevant terms to the 
learning process. 
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Table 2 Relevant terms 

Term Definition 
Frames {frame1, frame2, frame3, ...., framei} 
Actions {action1, action2, action3, ...., actioni} 

Rewards {reward1, reward2, reward3, ...., rewardi} 
Terminals {terminal1, terminal2, terminal3, ...., terminali} 

Statei {Frames[i], Frames[i-1], Frames[i-2], Frames[i-3]} 
Experiencei {State[i], Rewards[i], Actions[i], Terminals[i]} 

 

3.3 Testing 

During the learning phase, we begin updating the DQN and periodically saved the 
network to a file. To evaluate the performance of the system, the DQN can be 
loaded from that file and used to play the game (with its weights remaining constant 
throughout the game play). The system will still save experiences to memory but 
only so it can generate the 4 frame stacks to pass to the DQN to properly perceive 
the state of the game. The testing procedure can also display the current frame from 
the emulator to display the game to the user in real-time, and optionally save the 
frames to a file for future playback. 

4. Contributions 

Upon qualitatively evaluating the fully trained system, we noticed a behavior 
(across several games) that was inconsistent with our goal of automatically learning 
the objectives and strategies of a game. We found that although the system initially 
seemed to play the game extremely well, it would eventually get stuck in an infinite 
loop where the agent would neither die nor continue achieving the game objective 
(e.g., breaking bricks in the game “Breakout”). This type of behavior indicates that 
the system has not learned what we would expect it to learn—to play and beat the 
game—but rather has learned to simply keep playing or to not die. In this section 
we present several novel modifications to the system that attempt to address this 
issue. 

4.1 Reward-Triggered Updates 

During the learning process, updates to the network use randomly sampled 
experiences from the past. In general, there are orders-of-magnitude more training 
sequences that are unsuccessful and do not lead to rewards than there are successful 
action sequences. These experiences are all useful to learn general game knowledge 
(dynamics, etc.), but this does not place emphasis on learning which actions lead to 
rewards, which is a critical part of learning a strategy. In addition, most games have 
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a delayed reward signal, meaning there is a temporal gap between the action that 
actually leads to the reward and when the system experiences that reward. 
Therefore, when the system learns from an experience that has a positive reward 
associated with it, the true reward action is actually at some point in the (perhaps 
recent) past. To reduce the extreme ratio of “successful” to “unsuccessful” training 
sequences, we introduced reward-triggered updates. This allows the system to 
intentionally learn directly from the sequence of actions that lead to a reward. When 
the system experiences a reward, it stores that experience for later use but it also 
triggers a minibatch update to the DQN using minibatch-sized recent experiences. 
The update function is defined as  where N is a network and E is a set of 
experiences (see Eq. 3). Then the iterative update equation becomes 

                              (3) 

where S is the set of experiences in the normal schedule; R is the set of recent 
experiences; and r is the reward. (Fig. 4 depicts experience selections.) 

 
 a) b) 

Fig. 4 Pictured in a) is the random experience selection for a scheduled update; pictured in 
b) is the selection of recent experiences for a reward-triggered update. 

4.2 Repetition Inhibition  

As noted earlier, we found the system tended to get stuck in infinite action loops 
during testing. However, since each iteration of training is equivalent to a testing 
procedure, the system experiences these loops during training as well. While there 
is a small chance of taking a random action in later stages of training, if the system 
were to get stuck in an infinite loop, it would likely persist for long enough that the 
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experience memory would be saturated with the same subset of experiences. In 
turn, the DQN would be updated using that same subset of experiences and would 
cease learning anything useful until the system found its way out of the loop. To 
address this, we check the current preprocessed frame against recently encountered, 
preprocessed frames. If the distance (Eq. 4: L2 pixel-wise distance) between the 
current frame and a previous frame is below a threshold, rather than follow the 
current policy we would take a random action and attempt to break out of the loop. 
This choice is described in Eq. 5 and illustrated in Fig. 5.  

 
 (4) 

 
 (5) 

 

 

Fig. 5 A sequence in which Frames 1 and 4 are identical, indicating a loop; rather than 
follow the action policy for Frame 4, a random action would be taken 

4.3 Representation Pretraining 

The convolutional neural network employed by the system is responsible for 2 
distinct operations: interpreting the visual output of the game (convolutional layers) 
and defining the action policy (linear layers). When the network is updated using 
standard error back-propagation, the weights throughout the entire network are 
adjusted. This update procedure therefore is simultaneously trying to learn a good 
representation and a good action policy. During the experience-replay phase, the 
system learns with past experiences as inputs on the assumption the network has 
updated its learning policy (but not its representations); so, there may be more 
information to be gathered by examining those past experiences again. However, 
since the representations have also been changed, there is now a difference in how 
the system perceives those past experiences, reducing the amount that can be 
learned from the updated learning policy.  
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To address this, we train a full network until it reaches an acceptable level of 
performance and then separate the convolutional layers from the remainder of the 
network. We then reinitialize and train the linear layers using the separated 
convolutional layers as a fixed subnetwork whose output is used as the input to the 
linear layers  responsible for defining the action policy, as shown in Fig. 6. When 
an update occurs, we only adjust the linear network, which modifies the action 
policy without the requirement of relearning the representations. Once the 
representations have been learned once, this technique results in a substantial 
decrease in training time, from 12 days to only 1 day, allowing further 
experimentation without enormous delays in the design and testing cycle.  

 
Fig. 6 The fixed subnetwork of convolutional layers feeding into the reinitialized sub-
network of linear layers 

5. Future Work 

In future work, we will develop and perform quantitative-analysis techniques to 
better understand the effects of these modifications on the system. For example, we 
will examine the reward distributions (the number of times the system reaches some 
number of rewards before terminating) to determine which regions of the  
state–space the game is in during the majority of the training. We will also evaluate 
these techniques on more games, where we would expect to see a greater increase in 
performance as the complexity of the games increase. Finally, we will explore 
additional ideas that specifically address the problem of the delayed reward signal 
and how to correlate sequences of actions with rewards. 

6. Conclusions 

We have detailed the current state-of-the-art system for automatically learning 
action policies to play simple video games. After noting a serious shortcoming of the 
current system, we have introduced and studied 3 enhancements to mitigate this 
problem and have given a preliminary evaluation of their effect. Though we have not 
yet observed dramatic improvements in performance, we are hopeful that these 
techniques—coupled with future improvements—will enable the system to obtain a 
higher level of awareness and knowledge about the game dynamics and goals.  
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